首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   34篇
  国内免费   40篇
测绘学   3篇
大气科学   2篇
地球物理   19篇
地质学   141篇
海洋学   14篇
天文学   4篇
综合类   3篇
自然地理   13篇
  2022年   1篇
  2021年   3篇
  2020年   5篇
  2019年   6篇
  2018年   3篇
  2017年   13篇
  2016年   10篇
  2015年   7篇
  2014年   10篇
  2013年   10篇
  2012年   6篇
  2011年   13篇
  2010年   9篇
  2009年   11篇
  2008年   13篇
  2007年   9篇
  2006年   7篇
  2005年   7篇
  2004年   9篇
  2003年   6篇
  2002年   2篇
  2001年   5篇
  2000年   3篇
  1999年   1篇
  1998年   11篇
  1997年   4篇
  1996年   4篇
  1995年   1篇
  1994年   5篇
  1993年   2篇
  1990年   1篇
  1989年   1篇
  1980年   1篇
排序方式: 共有199条查询结果,搜索用时 437 毫秒
141.
稻城冰帽区更新世冰川测年研究   总被引:14,自引:6,他引:8  
通过ESR和14C测年对典型冰碛物进行直接和间接定年, 并结合冰碛地貌形态和位置, 确定稻城冰帽区自中更新世以来经历了6次较大规模的冰川前进, 依次与MIS-16、 MIS-6、 MIS-3中期、 MIS-2早期、全球意义上的末次盛冰期(MIS-2)和冰后期对应, 冰川作用规模基本上逐渐减小.最早、规模最大的冰川作用发生在570 ka BP前后, 意味着本段高原面在570 ka BP之前已进入了冰冻圈, 且自那时起, 该区经历了较大规模的抬升作用. 全新世到来之前, 稻城冰帽全部消失了, 它是一个随着气候冷暖波动逐渐后退的过程, 不是以死冰的方式突然消亡. 值得注意的是, 末次冰期大间冰阶中期(MIS-3b)的冰川前进规模超过了末次盛冰期(MIS-2), 表明末次冰期最盛期在全球范围内的不同步性. 其不同步的原因可能是: MIS-3中期, 北半球夏季太阳辐射相对较低, 但其海陆分布状况能够诱发较强的南亚夏季风, 它给以季风降水为主要补给的海洋性冰川区带来较多的降水, 结合该时段较低的温度, 有利于冰川较大规模前进; 末次盛冰期时, 气候严寒, 但夏季风微弱, 降水稀少, 冰川平衡线下降程度反而不及MIS-3b.  相似文献   
142.
Marine calcite cementation and lithification of Carboniferous carbonate sediments hosting Zn-Pb mineralisation in the Irish orefield occurred at or near the seafloor. A relatively early, fine-grained, grey replacive dolomite, preferentially developed in micrite, is widely developed in the Waulsortian Limestone Formation, the main host to mineralisation, and is pervasive in the southeastern Midlands in proximity to the Leinster Massif. This dolomite formed after the first four main stages of calcite cementation but probably also developed within tens of metres of the seafloor as evidenced by incorporation of clasts of dolomite in intraformational sedimentary breccias. Later, coarse-grained white dolomite preferentially replaced coarser components of the Waulsortian Limestone and infilled residual vuggy porosity. Whilst some of this coarse dolomite may be related to the fine replacive dolomite event, a common spatial association with fault zones, coupled with primary fluid inclusion data, suggest that a significant proportion of this phase precipitated during the onset of fault-controlled subsidence and widespread hydrothermal circulation within the Irish Midlands area. Fluids up to ~250 °C and 10–15 wt% NaCl equivalent, sourced from a Lower Palaeozoic basement-equilibrated fluid reservoir, infiltrated the carbonate sequence via faults and fractures. The more localised development of dolomite-cemented breccias (white matrix breccias) that are frequently associated spatially with mineralisation was a consequence of the increased focusing of these hydrothermal fluids. Ore formation was broadly synchronous with development of the white dolomite breccias but only happened where mixing occurred between the hydrothermal ore-fluids and localised, near-surface reservoirs of low-temperature, H2S-rich brine. In the Waulsortian, this process led to the precipitation of a distinctive black dolomite that forms a broad halo to massive sulphides. Although ore-stage sulphides postdate significant diagenesis of the host rocks, and often display "epigenetic" textures, the fact that much of the cementation occurred soon after carbonate deposition means that mineralisation does not have to have formed after significant burial. In fact, the occurrence of clasts of hydrothermal dolomite and sulphides in intraformational debris-flow breccias is only consistent with mineralising processes occurring in the near-seafloor environment, relatively soon after host-rock deposition. The regional development of a distinctive pink dolomite associated with faults and fractures was a post-ore event, and is considered to mark a regional brine migration linked to the onset of the Variscan orogeny. The development of this new tectonic and flow regime may have been responsible for the cessation of economic mineralisation in Ireland.Editorial handling: J. Menuge  相似文献   
143.
Approximately 1.2 km of dolomitic limestone overlies the Far West Rand gold reefs southwest of Johannesburg, South Africa. This karst aquifer is partitioned into several groundwater compartments by predominantly north–south trending syenite dykes. Prior to mining, the primary water flow was westwards, decanting over dyke boundaries as a succession of springs along the Lower Wonderfontein Spruit. Dewatering of the overlying dolomitic aquifer for safety and economic reasons by deep gold mining operations, caused the water levels of four compartments to drop and their respective springs to dry up. By perforating dykes, formerly separated aquifers were hydraulically interconnected by mining. Using historical and recent data of water flow—surface and groundwater—and pumping rates, a geohydrological model is presented. The results suggest that the water tables will rise to their pre-mining levels within 30 years after mining ceases and that the dry springs will flow again, despite the compartments being connected by the extensive mining operations.
C. J. U. SwartEmail: Phone: +27-18-7874435Fax: +27-18-7875972
  相似文献   
144.
Dolomite was successfully precipitated in culture experiments that simulated microbiogeochemical conditions prevailing during late stages of evaporation in ephemeral, hypersaline dolomitic lakes of the Coorong region, South Australia. Analyses of lake- and pore-water samples document rapid geochemical changes with time and depth in both dolomitic and non-dolomitic lakes. Extremely high sulphate and magnesium ion concentrations in lake waters decline rapidly with depth in pore waters throughout the sulphate-reduction zone, whereas carbonate concentrations in pore waters reach levels up to 100 times those of normal sea water. Ultimately, sulphate is totally consumed and no solid sulphate is recorded in the dolomitic lake sediments. ‘Most probable number’ calculations of lake sediment samples record the presence of large populations of sulphate-reducing bacteria, whereas sulphur-isotope analyses of lake-water samples indicate microbial fractionation in all the lakes studied. Viable populations of microbes from the lake sediments were cultured in anoxic conditions in the laboratory. Samples were then injected into vials containing sterilized clastic or carbonate grains, or glass beads, immersed in a solution that simulated the lake water. Falls in the levels of sulphate and rising pH in positive vials were interpreted as indicating active bacterial sulphate reduction accompanied by increased concentrations of carbonate. Within 2 months, sub-spherical, sub-micron-size crystals of dolomite identical to those of lake sediments were precipitated. It is concluded that bacterial sulphate reduction overcomes kinetic constraints on dolomite formation by removing sulphate and releasing magnesium and calcium ions from neutral ion pairs, and by generating elevated carbonate concentrations, in a hypersaline, strongly electrolytic solution. The results demonstrate that bacterial sulphate reduction controls dolomite precipitation in both the laboratory experiments and lake sediments. It is proposed that dolomite formation, through bacterial sulphate reduction, provides a process analogue applicable to thick platformal dolostones of the past, where benthic microbial communities were the sole or dominant colonizers of shallow marine environments.  相似文献   
145.
A recently discovered dolomite carbonatite at Pogranichnoe, North Transbaikalia, Russia, dated at 624 ± 3 Ma, contains xenoliths of calcite-bearing dolomite carbonatite with graphite spherulites. Apatite and aegirine are the other rock-forming minerals. Chemically the carbonatites are ferrocarbonatite and ferruginous calciocarbonatite. The graphite forms <1 mm up to 1.5 mm diameter spherulites, with Raman spectra similar to published spectra of microcrystalline, amorphous carbon and disordered graphite, with G and D bands at 1,580−1,600 cm−1 and at around 1,350 cm−1. Alteration has formed Fe-bearing calcite to Ca-bearing siderite compositions not previously reported in nature around the graphite along cracks and fractures. Mineral and stable isotope geothermometers and melt inclusion measurements for the carbonatite all give temperatures of 700°–900°. It is concluded that the graphite precipitated from the ferrocarbonatite magma. There are three candidates to control the precipitation of graphite (a) a redox reaction with FeII in the magma, (b) potential presence of organics in the magma (c) seeding of, or dissolution in, the magma of graphite/diamond from the mantle, and further work is required to identify the most important mechanism(s). Graphite in carbonatite is rare, with no substantial published accounts since the 1960s but graphite at other localities seems also to have precipitated from carbonatite magma. The precipitation of reduced carbon from carbonatite provides further evidence that diamond formation in carbonate melts at high mantle pressures is feasible.  相似文献   
146.
Palaeogene dolostones from the sub‐surface of Florida are ideal for the study of dolomite maturation because they record the early stages of a secondary dolomite overprint without destruction by later diagenetic overprints. Two distinct dolomite textures occur in the dolostones of the Upper Eocene Ocala and Lower Oligocene Suwannee limestones in west‐central Florida: a porous and permeable sucrosic dolomite and a less porous and relatively impermeable indurated non‐sucrosic dolomite. In both textures, the initial matrix dolomite is dully luminescent, whereas the secondary overprint is dominantly luminescent cement in the Suwannee and only neomorphic luminescent dolomite in the Ocala. The abundance of luminescent dolomite ranges from 2% to 38%, which translates to 1·6 km3 of material in the Suwannee and 13·5 km3 in the Ocala. Extrapolated trace‐element contents (Sr and Na) and δ18O values for the matrix and luminescent end‐members indicate a marine origin for the matrix dolomite in both units, and a freshwater–seawater mixing‐zone origin for the secondary luminescent dolomites. The δ18O values indicate that a saline, middle mixing‐zone environment overprinted the Suwannee but a more dilute mixing zone affected the Ocala. Fluid–fluid mixing models constrained by modern Floridan aquifer hydrochemistry and extrapolated 87Sr/86Sr values of the luminescent phases indicate that the mixing zones operated during the Late Miocene to Pliocene in the Ocala and affected the Suwannee in the Pliocene. The luminescent Suwannee mixing‐zone cement reduced porosity up to threefold and permeability up to 100‐fold, which converted many sucrosic dolomites to indurated dolomites. By contrast, the neomorphic luminescent Ocala dolomite did not have an appreciable impact on the maturations. Although freshwater–seawater mixing zones were not the sites of the initial dolomitization, the mixing‐zone environment did dramatically overprint and mature the regionally widespread dolomites of the Ocala and Suwannee limestones. This maturation occurred shortly after formation of the proto‐Floridan aquifer; the timing suggests the matrix dolomites were ‘ripe’ for alteration and that the only prerequisite for mixing‐zone dolomite is pre‐existing dolomite substrates to reduce kinetic barriers. In contrast to recent claims, the results of this study demonstrate that mixing zones can be effective in forming regionally significant amounts of secondary dolomite and influencing the petrophysical maturation of dolomite bodies.  相似文献   
147.
It has long been recognised that within zones of intense non-coaxial deformation, fold hinges may rotate progressively towards the transport direction ultimately resulting in highly curvilinear sheath folds. However, there is a surprising lack of detailed and systematic field analysis of such “evolving” sheath folds. This case study therefore focuses on the sequential development of cm-scale curvilinear folds in the greenschist-facies El Llimac shear zone, Cap de Creus, Spain. This simple shear-dominated dextral shear zone displays superb three dimensional exposures of sheath folds defined by mylonitic quartz bands within phyllonite. Increasing amounts of fold hinge curvature (δ) are marked by hinge segments rotating into sub-parallelism with the mineral lineation (Lm), whilst the acute angle between the axial-planar hinge girdle and foliation (ω) also displays a sequential reduction. Although Lm bisects the noses of sheath folds, it is also clearly folded and wrapped-around the sheath hinges. Lm typically preserves a larger angle (θ) with the fold hinge on the lower limb (L) compared to the upper (U) limb (θL > θU), suggesting that Lm failed to achieve a steady orientation on the lower limb. Adjacent sheath fold hinges forming fold pairs may display the same sense of hinge arcing to define synthetic curvature, or alternatively opposing directions of antithetic curvature. Such patterns reflect original buckle fold geometries coupled with the direction of shearing. The ratio of long/short fold limbs decreases with increasing hinge curvilinearity, indicating sheath folds developed via stretching of the short limb, rather than migrating or rolling hinge models. This study unequivocally demonstrates that both hinges of fold pairs become curvilinear with sheaths closing in the transport direction recording greater hinge-line curvilinearity compared to adjacent return hinges. This may provide a useful guide to bulk shear sense.  相似文献   
148.
The dissolution rate-determining processes of carbonate rocks include: (1) heterogeneous reactions on rock surfaces; (2) mass transport of ions into solution from rock surfaces via diffusion; and (3) the conversion reaction of CO2 into H+ and HCO 3 . Generally, it is the slowest of these three processes that limits the dissolution rate of carbonate rock. However, from experiment and theoretical analysis under similar conditions not only were the initial dissolution rates of dolomite lower by a factor of 3–60 than those of limestone, but also there are different dissolution rate-determining mechanisms between limestone and dolomite. For example, for limestone under the condition of CO2 partial pressures dissolution rates increased significantly by a factor of about ten after addition of carbonic anhydrase (CA) into solution, which catalysed the conversation reaction of CO2, whereas CA had little influence on dolomite dissolution. For dolomite, the increase of dissolution rate after addition of CA into solution appeared at Moreover, the enhancement factor of CA on dolomite dissolution rate was much lower (by a factor of about 3). In addition, when dissolution of both limestone and dolomite was determined by hydrodynamics (rotation speed or flow speed), especially under the dissolution of limestone was more sensitive to hydrodynamic change than that of dolomite. These findings are of significance in understanding the differences in karstification and relevant problems of resource and environment in dolomite and limestone areas.  相似文献   
149.
Gemerská Poloma矿床是个重要的滑石矿床(储量20万吨),位于西喀尔巴阡山脉Germeric地区。部分滑石化的镁质碳酸盐体赋存在早古生代火山沉积杂岩体中(黑色片岩,变质泥岩),在Variscan变质作用(M1)过程中受到了绿泥石-黑云母带区域变质相的改造。这种原岩是石灰岩的矿体由白色-灰白或者灰色-黑色的菱镁矿与白云石1组成,被次生的白云石2和滑石脉切割。本次研究考察了两次变质事件(M1和M2)的几个连续的矿物组合,最早的组合包括铁白云石,镁菱铁矿与菱铁矿,(并与黑电气石,铁绿泥石,磷灰石,与伊利石-白云母伴生),它们以微小残留物形式产出在菱镁矿和白云石1中,其形成可能早于M1变质作用高峰期。M1变质事件的高峰期以富铁金云母,镁绿泥石1,镁电气石(黑电气石的边缘)和石英的组合为代表。在M1退变质作用过程中,发生了镁交代作用,开始是白云石1结晶,接下来形成菱镁矿,最后是以铁菱镁矿沿裂隙的形成而终。根据碳酸盐地质测温原理,M1变质事件的高峰期温度为460~490℃,变质矿物组合特征也支持这一测温结果。滑石,白云石2,与镁绿泥石2沿着镁碳酸盐岩石裂隙的发育,主要受到M2变质事件的影响,这个变质事件与较年青的Alpine造山事件有关。 菱镁矿流体包裹体的研究表明,成矿流体具有复杂的组成,可能以MgCl2组分为主,主要来  相似文献   
150.
Dubravsky Massif菱镁矿体的开采产生了部分局限在石炭纪低裂缝渗透变质岩中的喀斯特型裂缝含水层.大量的开矿过程对含水层中的地下水循环和化学成分都造成了可观的变化.本文研究了在这种复杂条件下地下水化学成分变化成因模型.根据化学配位模型,计算出所选矿物的饱和指数,从而指示所有喀斯特裂缝含水层饱和带中的地下水对菱镁矿、白云石、方解石的过饱和度和石膏的不饱和度.假设地下水未受人类活动的污染,而白云石中黄铁矿的氧化对成矿影响甚微,则水化学数据的统计描述代表了含水层中的水文地球化学背景.矿山中矿石焙烧释放的富氮气体凝聚产生的醋酸,能促进菱镁矿和白云石的溶解.这样产生的地下水相对背景值来说则富集NO3,Mg,和TIC.因此,由于地下开矿,岩溶作用估计将是原来的1.5倍.尽管有污染,这些所测参数并没有超过斯洛伐克卫生保健部颁发的No.29/2002 Z.z.饮用水标准临界值.因此采矿后含水层的开采也是可行的.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号